锆石是锆和铪的主要来源,也是岩石成因建模和测年的关键矿物。尽管已经报道了热液矿物系统中出现的锆石,但关于完全从饱和热液中结晶的锆石的详细研究却很少见。在这里,我们报告了大约 1911 Ma 的热液锆石晶体,它是从沸腾的高盐度 H 2 O-CO 2中结晶出来的。流体包裹体均质化温度为 295 至 325 °C 和相应压力为 71 bar 的热液流体。然后这些锆石晶体在 1864 Ma 和 528 Ma 被两个阶段的热液锆石脉叠印。锆石脉由沸腾的中低盐度热液结晶而成,流体包裹体均一化温度和相应的压力分别为 302 至 329 ℃和 75 巴以及 290 至 320 ℃和 70 巴。我们研究中的锆石晶体显示出尖锐而规则的阴极发光振荡环带和低且一致的微量元素浓度和随流体盐度降低的 Th/U 比。这些锆石的Th/U比值介于岩浆锆石值(>0.5)和变质锆石值(≤0.1)之间。锆石样品的稀土元素浓度和微量元素蜘蛛网图没有记录它们的热液起源。重要的是,低浓度的 HfO2 (<1%)、Y (<400 ppm) 和 Ti (<4 ppm) 可以区分热液锆石与火成岩和变质锆石。热液锆石被认为是矿床测年的有效工具,也是锆和铪等关键元素的主要来源之一。
"点击查看英文标题和摘要"
Hydrothermal zircon: Characteristics, genesis and metallogenic implications
Zircon is a principal source of zirconium and hafnium, as well as a key mineral both for petrogenetic modeling and age dating. Although zircon occurrences have been reported from hydrothermal mineral systems, detailed studies on zircon that crystallized entirely from saturated hydrothermal fluid are rare. Here we report on hydrothermal zircon crystals dated at about 1911 Ma that crystallized from boiling high-salinity H2O-CO2 hydrothermal fluid with fluid inclusion homogenization temperatures of 295 to 325 °C and the corresponding pressure of 71 bar. These zircon crystals were then overprinted by two stages of hydrothermal zircon veins at 1864 Ma and 528 Ma. The zircon veins crystallized from boiling hydrothermal fluids of moderate to low salinities with fluid inclusion homogenization temperatures and the corresponding pressures of 302 to 329 °C and 75 bar and 290 to 320 °C and 70 bar, respectively. The zircon crystals in our study show sharp and regular cathodoluminescent oscillatory zonation and low and consistent trace element concentrations and Th/U ratios that decrease with fluid salinity. The Th/U ratios of these zircons lie between the magmatic zircon values (>0.5) and metamorphic zircon values (≤0.1). The rare earth element concentrations and trace element spidergram patterns of the zircon samples do not record their hydrothermal origin. Importantly, the low concentrations of HfO2 (<1%), Y (<400 ppm) and Ti (<4 ppm) can discriminate hydrothermal zircon from igneous and metamorphic zircons. Hydrothermal zircon is considered as an effective tool for the dating of mineral deposits and also represents one of the main sources of critical elements such as zirconium and hafnium.